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This Special Session is devoted to different aspects of the modern Wave Propagation theory. The topics included
are wave propagation in different media, oscillations of mechanical systems, random waves and oscillations, nonlinear
optics, nonlinear waves, optical solitons, dispersion-managed solitons, quasi-linear pulses, solitary waves, solitons in
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Modeling light trapping in nonlinear periodic struc-
tures

Alejandro B. Aceves
The University of New Mexico, USA
aceves@math.unm.edu
Tomas Dohnal

An area of intense research is that of photonics, where
light propagation features are controlled by clever en-
gineering of periodic optical structures. For example,
the fiber bragg grating where an additional intensity de-
pendent nonlinear index of refraction allows soliton like
propagation with tunable velocities. In this work we con-
sider nonlinear periodic geometries. We show that the
additional transverse dimension allows for a richer dy-
namics of light trapping, bending and switching, provided
stable gap soliton-like bullets exist. We first show the
behavior of soliton-like bullets in a nonlinear periodic
waveguide. We then follow by medeling the interaction
of these solitons with defects in the photonic structure.
Finally, a reduced finite dimensional model to study the
dynamics of trapped energy carried by incident 2D gap
solitons (GS) into localized defects in Bragg resonant
Kerr nonlinear (photonic) gratings is presented.
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Degeneration of creeping waves on an anisotropic
impedance surface

Ivan V. Andronov
St.Petersburg State University, Russia
iva@aa2628.spb.edu

Creeping waves propagate along the convex surface of
an obstacle and give the filed in deep shadow. Dielec-
tric coverings on the obstacle can be described in many
cases by Leontovich impedance boundary conditions. If
the material of the covering is anisotropic this condi-
tion becomes matrix. Creeping waves on an anisotropic

impedance surface were studied, for example, in [1] with
the use of “impedance stretching” technique (see also [2]).
It can be seen from these results that a specific case of
anisotropic impedance appears, namely when the ”equiv-
alent” impedances of the two types of creeping waves
coincide. This happens together with the degeneration of

the matrix,
(

detZ −Zsa
Zsa 1

)
where Z =

(
Zaa Zsa
Zsa Zss

)

is the impedance matrix written in coordinates (s,a), s
is the arc-length of the geodesics followed by creeping
waves, a is transverse surface coordinate. Two subcases
are possible. The simpler one is when Zsa = 0. This case
is similar to the case of isotropic impedance equal to one
which is studied in [3] (see also [2]). The other case with
Zsa 6= 0 appears more difficult. The usual form asymp-
totic decomposition occurs inapplicable. Modifications
required are in introducing additional exponential factor
proportional to k1/6 (k is wave number, large parameter)
and in carrying out the asymptotic expansion in inverse
powers of k1/6, but not k1/3 as usually. The recurrent
procedure is to be described and the principal order ex-
pression for the creeping wave in that degenerated case
will be presented. This expression allows the following
effects to be noticed:
• Additional quick (like k1/6s) dependence of the wave
field appears.
• Such parameters of the surface as torsion are presented
in this quick dependence (to compare, in the general case
torsion is presented only in the correction to the amplitude
and in the case of impedance equal to one it appears in the
amplitude factor, but without large parameter).
• In the leading order creeping wave of both types have
coincident polarization, difference appears only in the
first order correction, i.e. at the order k−1/6.
• Some additional multipliers appear.
Participation is supported by INTAS CIG Nr 05-1000002-
5620.
[1] I. Andronov, D. Bouche “Theoretical analysis of
creeping waves”, Annales des Telecomm., 1993, vol. 49,
No 3–4. pp. 193-210.
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[2] F. Molinet, I. Andronov, D. Bouche “Asymptotic and
Hybrid Methods in Electromagnitics”, IEE Electromag-
netic Waves Series 51, 2005.
[3] D. Bouche “La methode des courants asymptotiques”,
These, Universite Bordeaux-1, 1992.
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Optimal design of an elastic string with respect to its
optical length

Boris P. Belinskiy
University of Tennesee at Chattanooga, USA
Boris-Belinskiy@utc.edu

We discuss some problems of the optimal design (opti-
mal mass distribution ρ(x)) for an elastic string with the
fixed end points and given tension distribution p(x). The
criterion is the time of control associated with the optical
length. The functional T = 2

R l
0

√
ρ(x)/p(x)dx is known

as the time of exact controllability of the string and the
total mass is given by M =

R l
0 ρ(x)dx. We discuss the

following Problem: Given the length of the string, the
tension function , and its total mass find a distribution
of the density ρ(x) such that the time of control T is a
maximal / minimal possible. We prove the existence of
Tmax and construct the corresponding design explicitly.
We further prove that inf T = 0 and construct one of the
possible minimizing sequences. We consider some exam-
ples of the string (control of which was recently studied).
For a rotating string, the previous results may not be ap-
plied, but another approach shows that supT = ∞. An
elastic string with the tension p(t) (a function of time, not
coordinate) is considered as well.

−→ ∞¦∞←−

Stochastic Perturbation of power law optical solitons

Anjan Biswas
Delaware State University , USA
biswas anjan@hotmail.com
Huaizhong Ren

The soliton perturbation theory is used to study and
analyze the stochastic perturbation of optical solitons,
with power law nonlinearity, in addition to determinis-
tic perturbation terms, that is governed by the nonlinear
Schrodinger’s equation. The Langevin equations are de-
rived and analysed. The deterministic perturbation terms
that are considered here are due to filters and nonlinear
damping.

−→ ∞¦∞←−

Energy of a General Linear Wave Equation Driven by
Fractional-in-Time Noise

Peter M. Caithamer
University of Southern Indiana, USA
caithamer@usi.edu
Boris Belinskiy

This talk considers a general linear stochastic wave equa-
tion driven by fractional-in-time noise with Hurst param-
eter, H ∈ (0,1). The equation is solved and its energy is
studied. Series expansions for both the energy and the
expected energy are given. Asymptotic results for the ex-
pected energy for large and small times are found. These
results shed light on the inteplay between the fractional-
in-time noise and the wave operator. It is also shown that
the expected energy is continuous as a function of H at
H = 1/2. Finally, analytic continuation is used to provide
an alternate analysis for H < 1/2.

−→ ∞¦∞←−

Asymptotic models for diffraction by thin wires

Xavier Claeys
Projet POems INRIA Rocquencourt, France
xavier.claeys@inria.fr
H. Haddar and P. Joly

This presentation deals with the asymptotic analysis of
the outgoing solution to the Hemholtz equation (denoted
by uε) outside perfectly conducting thin wires . In par-
ticular, consider the segment Iα = {x(x,y,z) ∈ R3 , x =
y = 0 , |z| 6 α} and a family of regular open sets (thin
wires) ωε

α ⊂ R3 containing Iα such that ωε
α contracts into

Iα when ε → 0. In the case α = +∞, we establish the
existence and uniqueness of the outgoing solution to the
Helmholtz equation and study the asymptotic behavior of
uε as ε→ 0 using Fourier transform. In the case α is finite,
using prolate spheroidal coordinates, the same asymptotic
analysis is done. In particular, these results are valid in
the neighbourhood of the tips.

In the context of the scattering by thin wires, these an-
alytic results could be the starting point for the design of
new volumic numerical methods that would provide ac-
curate results without meshing the 3D geometry of wires.
These methods would provide a satisfying alternative to
the heuristic Holland model.

−→ ∞¦∞←−

Oscillatory motion of solitons in two-dimesional
waveguides

Matthew E. Edwards
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Alabama A&M University, USA
matthew.edwards@email.aamu.edu
Sihon Crutcher

It is well known that the one-particle type spatial soliton
exists by maintaining a balance between propagational
dispersive as the linear contribution and propagational
refraction from nonlinear effects. When such a soliton
propagates in a medium with a spatially varying, inho-
mogeneous index of refraction, the soliton may follow a
non-straight line path. In this paper, we present evidence
of the oscillatory motion of solitons in a triangular index
profile. In both the Kerr and power law media, we have
shown that the soliton behaves as a classical particle that
is trapped in a potential well. Here, we calculate the spa-
tial acceleration, and corresponding spatial period. Using
the 620 nm wavelength input laser, soliton periods on the
order of magnitude of 16 cycles per meter of travel dis-
tance occur for stable filaments or self-channel solitons
having intensities of 3x1016 watts/m2. These behaviors
are developed through the higher nonlinear Schrödinger’s
equation (HNLSE). Also, our results are compared the
swing effect for a Gaussian index profile. These results
are critical for optical switching, automatic multiplexing
and the all-optical computing

−→ ∞¦∞←−

Classical Wave Propagation, Quantum Physics, and
Modern Mathematical Asymptotics: the Holy Trinity
of Classical Wave Theory

Louis Fishman
MDF International, USA
Shidi53@aol.com

Seismo-acoustic wave propagation, imaging, and inver-
sion modeling and computation are complicated by the
complex, layered environments that extend over very
large domains in the interior of the earth. Over the past
decades, these problems have been attacked by direct ap-
proximations on the wave field (e.g., perturbation theory,
asymptotic ray theory, spectral analysis, Gaussian beams),
derivations of approximate wave equations (e.g., scaling
analysis, approximation theory), and computational par-
tial differential equation (pde) methods (e.g., finite dif-
ferences, finite elements, spectral methods). Rather than
focus on these more traditional approaches to direct and
inverse, classical wave propagation modeling and com-
putation, this talk will examine an approach based on
the application of what is loosely referred to as phase
space and path integral methods. These methods were
developed primarily in the quantum physics and theoret-
ical pde communities, and include constructions such as

Feynman’s path integral formulation of non-relativistic
quantum mechanics, and the theories of pseudodifferen-
tial and Fourier integral operators, for example. The prin-
cipal aims of this approach are (1) to exploit well-posed,
one-way (marching) methods in these inherently two-
way(global) problems, (2) to exploit the correspondences
between classical wave propagation, quantum physics,
and microlocal analysis (modern mathematical asymp-
totics), and (3) to extend Fourier methods to analyze in-
homogeneous environments.

−→ ∞¦∞←−

Stochastic Volterra equations in Hilbert space

Anna Karczewska
University of Zielona Góra, Poland
A.Karczewska@im.uz.zgora.pl

We consider the following stochastic Volterra equation
in a Hilbert space H

X(t) = X0 +
Z t

0
a(t− τ)AX(τ)dτ+

Z t

0
Ψ(τ)dW (τ), (1)

where t ≥ 0, A is a closed unbounded linear operator in H
with a dense domain D(A) and a ∈ L1

loc(R+). The equa-
tion (1) is driven by a Wiener process W (genuine or cylin-
rical one). The process Ψ is an appropriate stochastic pro-
cess.

A deterministic version of the equation (1) arises in
several applications as model problems. Moreover, the
techniques like perturbation or coordinate transforma-
tion allow to transfer results for such model problems
to parabolic integro-differential equations on smooth do-
mains.

If the kernel function a is completely positive and the
operator A generates a C0-semigroup, we can provide suf-
ficient conditions for mild solutions to be also strong so-
lutions to the eq. (1), see [1].

Let us note that if

a(t) =
tα−1

Γ(α)
, α > 0, (2)

the eq. (1) is an integral form of the equation

Dαu(t) = Au(t)+ f (t), t ∈ (0,T ],

where Dα, α > 0, is a fractional derivative and A is as
above.

Note that the kernel function a is completely positive
only for α ∈ (0,1], but for α > 1 is not. So, the above
mentioned results can not be directly used (see, [2]). The
talk will present the recent results concerning the equa-
tions (1) with the kernel (2).
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References:
[1] A.Karczewska, C.Lizama, Strong solutions to stochas-
tic Volterra equations, submitted.
[2] A.Karczewska, C.Lizama, Stochastic fractional
Volterra equations in Hilbert space, submitted.

−→ ∞¦∞←−

Convectons

Edgar Knobloch
University of California at Berkeley, USA
knobloch@px1.berkeley.edu
A. Alonso, O. Batiste and I. Mercader

Recent simulations [1,2] of binary fluid convection with
a negative separation ratio reveal the presence of mul-
tiple numerically stable spatially localized steady states
we have called ’convectons’. These states consist of a
finite number of convection rolls embedded in a non-
convecting background and are present at supercritical
Rayleigh numbers. The convecton length decreases with
decreasing Rayleigh number; below a critical Rayleigh
number the convectons are replaced by relaxation os-
cillations in which the steady state is gradually eroded
until no rolls are present (the slow phase), whereupon a
new steady state regrows from small amplitude (the fast
phase) and the process repeats. Both 3He-4He mixtures
[1] and water-ethanol mixtures [2] exhibit this remark-
able behavior. Stability requires that the convectons are
present in the regime where the conduction state is con-
vectively unstable but absolutely stable. The multiplicity
of stable convectons can be attributed to the presence of
a ’pinning’ region in parameter space, or equivalently to
a process called homoclinic snaking [3]. In the pinning
region the fronts bounding the convecton are pinned to the
underlying roll structure; outside it the fronts depin and
allow the convecton to grow at the expense of the small
amplitude state (large Rayleigh numbers) or shrink back
to the small amplitude state (low Rayleigh numbers). The
convectons may exist beyond the onset of absolute insta-
bility but the background state is then filled with small
amplitude traveling waves. A theoretical understanding
of these results will be developed.
References:
[1] O. Batiste and E. Knobloch. Simulations of local-
ized states of stationary convection in 3He-4He mixtures.
Phys. Rev. Lett. 95, 244501 (2005).
[2] O. Batiste, E. Knobloch, A. Alonso, I. Mercader. Spa-
tially localized binary fluid convection. Journal of Fluid
Mechanics (in press).
[3] J. Burke and E. Knobloch. Localized states in the
generalized Swift-Hohenberg equation. Physical Press E
(in press).

−→ ∞¦∞←−

Some Aspects of Wave Propagation Using Modified
Nonlinear Schrodinger Equation

Swapan Konar
Birla Institute of Technology, India
swakonar@yahoo.com

We have investigated high power nonlinear optical wave
propagation in doped fibers and other materials possess-
ing higher order nonlinearity. Both single and coupled
waves have been considered. First we have investigated
evolution of two spatially separated laser beams which
are propagating in a cubic quintic nonlinear media. Vari-
ational formalism has been employed for the derivation
of evolution equations of several parameters relevant to
laser beams. We have shown that due to mutual nonlinear
interaction two parallel circular Gaussian beams become
elliptical Gaussian after traveling finite distance. It is re-
vealed that though in the Kerr media no stable composite
bound state exists, oscillating stationary bound state ex-
ists in quintic media. Dragging and trapping of a weak
laser beam by a strong laser beam has been discussed.
The role of quintic nonlinearities in induced focusing,
formation of composite bound states, soliton dragging
and on all optical switching have been highlighted. Next
we have investigated the propagation characteristics of
a cosh-Gaussian laser beam in a chalcogenide glass. At
the end we have investigated the propagation characteris-
tics of a chirped optical pulse in anomalously dispersive
media possessing saturating nonlinearity.

−→ ∞¦∞←−

Fractional Laplace Motion

Tomasz J. Kozubowski
University of Nevada at Reno, USA
tkozubow@unr.edu
Mark M. Meerschaert and Krzysztof Podgórski

Fractional Laplace motion (FLM) is a new stochastic
process obtained by subordinating fractional Brownian
motion (FBM) with parameter 0 ¡ H ¡ 1 to a gamma pro-
cess. In the special case H = 1/2, FLM densities solve a
fractional evolution equation with exponentially weighted
derivatives, a variation on the usual fractional deriva-
tive. Developed recently to model hydraulic conductivity
fields in geophysics, FLM also seems to be an appro-
priate model for certain financial time series. Its one
dimensional distributions are scale mixtures of normal
laws, where the stochastic variance has the generalized
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gamma distribution. These one dimensional distributions
are more peaked at the mode than a Gaussian, and their
tails are heavier. This talk is an overview of the basic
properties of the FLM process. which include covariance
structure, densities, moments, stochastic representations,
infinite divisibility, stochastic self-similarity, and tail be-
havior. Time permitting, we shall also discuss the cor-
responding fractional Laplace noise, which may exhibit
long-range dependence.

−→ ∞¦∞←−

Boundary controllability of Maxwell’s equations with
heterogeneous medium and nonzero conductivity in-
side a general domain

Slava Krigman
MIT/Lincoln Laboratory, USA
krigman@ll.mit.edu

In this presentation we consider the question of control
of Maxwell’s equations in a non-homogeneous medium
with positive conductivity by means of boundary surface
currents. The existing literature on this topic only deals
with zero internal conductivity case, to the best of the
author’s knowledge. In present work we assume that do-
main is bounded simply connected star-shaped region in
R3 which is made up of a heterogeneous medium with
positive conductivity, with controls being applied over the
entire boundary. Using the Hilbert Uniqueness Method
of Lions, the exact boundary controllability over a suf-
ficiently long time period is established for this case,
provided that both the size and the spatial gradient of the
conductivity term is small enough to satisfy certain tech-
nical inequality (even if the medium is homogeneous).
Also for our proof to work, the functions describing the
electric permittivity and the magnetic permeability must
satisfy certain technical inequalities, which roughly imply
that these functions may not be radially decreasing.

−→ ∞¦∞←−

Diffraction of an electromagnetic wave by a elongated
prolate body using Heun bi-confleunt equation

Damien M. Laval
Dassault-Aviation, France
damien.laval@dassault-aviation.fr
V. Bruneau

Following the Geometrical Theory of Diffraction ap-
proach of creeping waves introduced by J. B. Keller and
the contribution of I. Andronov and D. Bouche (*) on
elongated bodies, the authors have developed formulas

that can be used in concrete situations. The idea is first to
have high frequencies asymptotics expansions of the total
electromagnetic field near the body.

In a first step, the most common formulas have been
explained close to the lit-shadow boundary and in the deep
shadow region on the surface. By using geodesic coordi-
nate system, analytics solutions of the main term of the
total electromagnetic field have been derived for an ob-
servation point located close to the surface.

The problem is secondly solved by the same way for
moderatly elongated bodies. The Fourier transform of the
electromagnetic field satisfies the Airy equation as in the
first case. Solutions of the amplitude equation requiring
the transverse geodesic curvature have been developed.

The case of elongated bodies involve bi-confluent
Heun equation. New Fock functions, used to describe the
solutions form developed for creeping waves are requiring
the transverse geodesic curvature.

Finally, we have applied our theorical developments
to a strongly elongated prolate spheroid illuminated by a
plane wave propagating in its axial direction. Numerical
results for the asymptotic currents along the geodesic fol-
lowed by creeping waves will be shown and compared to
the results obtained by solving the EFIE.

(*) ANDRONOV, I., and BOUCHE, D. : ”Asymp-
totics of creeping waves on a strongly prolate body” An-
nales des Telecomunications, 1994, 49,(3-4), pp. 205-
210.

−→ ∞¦∞←−

Wave Propagation and Energy Transformation in
Checkerboard Spatiotemporal Microstructures

Konstantin A. Lurie
Worcester Polytechnic Institute, USA
klurie@wpi.edu
Suzanne L. Weekes

We consider propagation of waves through a rectan-
gular checkerboard-type spatio-temporal material struc-
ture (dynamic material) in one spatial dimension and time.
Both spatial and temporal periods in this material are as-
sumed to be of the same order of magnitude. The rectan-
gles in a checkerboard are assumed to be filled with mate-
rials having equal impedance but different phase speeds.
Within certain parameter ranges, we observe numerically
the formation of distinct and stable limiting characteris-
tic paths (“limit cycles”) that attract neighbouring char-
acteristics after a few time periods. The average speed
of propagation along the limit cycles remains the same
throughout certain ranges of parameters of the microge-
ometry making the material microstructure stable. A dy-
namic material is a thermodynamically open system, as it
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is involved in a permanent exchange of energy and mo-
mentum with the environment. Material assemblages that
produce the limit cycles are special in this aspect. Specif-
ically, to make a wave travel through such an assemblage,
an external agent may need to supply energy to maintain
the material pattern. We see analytically and numerically
that the energy may be accumulated in a wave travelling
through this pattern and will become infinite due to the
mechanism similar to that working in a swing. Moreover,
due to the properties of limit cycles, waves can be com-
pressed spatially to produce pulses with extraordinarily
high power densities. This feature is impossible with lam-
inates; it is specifically due to the checkerboard property
pattern.

−→ ∞¦∞←−

A new method for the determination of the electro-
magnetic impulse response of a target

Frédéric Molinet
Société MOTHESIM, France
fredericmolinet@magic.fr

The response of a target to an electromagnetic impulse
remains an important problem especially when the im-
pulse becomes very narrow so that its spectrum extends
far in the high frequency domain. In such situations,
standard methods for solving the problem (finite differ-
ences, marching in time procedures applied to the integro-
differential equations in the time-domain,...) become im-
practical. An alternative approach consists in treating
the limiting case of an infinitely narrow incident impulse
which is mathematically defined by a Dirac distribution.
Once the solution to this problem which is called the
impulse response, is known, the solution of the narrow
impulse problem may be obtained by a convolution prod-
uct. In this paper, a new approach for determining the
impulse response of an arbitrary perfectly conducting
smooth convex object is presented. The method takes ad-
vantage of a well known theorem which allows to identify
separately the terms defined on the support of the Dirac
distributions and elsewhere in the time domain Kirchhoff
integro-differential equations verified by the diffracted
field. As a result, separate equations are obtained for the
impulse components and the non-impulse components of
the diffracted field. It is shown that the impulse compo-
nents are identical to the time domain geometrical optics
field whereas the non-impulse components verify a sys-
tem of integro-differential equations which can be solved
by a marching in time technique once the initial values
of the components and their first order derivatives are
known. The important point is that these equations have
no singularity related to the incident field. They can there-

fore be solved with a sampling of the surface depending
only on its geometry and not on the shape of the impulse
as in the standard techniques. Another important result
is that the initial values of the non-uniform components
and their first order derivatives are given by the second
and third order terms of the Luneburg-Kline expansion.
Our method gives therefore the correction term to the ray
method in the time domain.

−→ ∞¦∞←−

Form methods for damped wave equations

Delio Mugnolo
University of Ulm, Germany
University of Bari, Italy
delio.mugnolo@uni-ulm.de

The methods of bilinear (or, more generally, sesquilinear)
forms has been developed since the 1950s as an effec-
tive Hilbert space technique to deal with abstract Cauchy
problems of parabolic type, generalizing the Spectral The-
orem to the non self-adjoint case (in pretty much the same
way as the Lax-Milgram Lemma generalizes the Riesz-
Fréchet Theorem), and furthermore allowing for a num-
ber of results about qualitative properties of solutions.
It is a folk theorem that each problem governed by an
analytic semigroup can be discussed by means of form
techniques, but it seems that little attention has been paid
so far to a special class of abstract Cauchy problems of
parabolic type: those second order problems modeling
damped wave equations like ü(t) = Au(t) + ρAu̇(t) or
ü(t) = Au(t)+ρAαu̇(t). In our talk, we introduce a moti-
vating problem and discuss its (analytical) well-posedness
by means of form techniques, generalizing some known
results of, among others, Chen-Triggiani and Xiao-Liang
to the case where A is not self-adjoint.

−→ ∞¦∞←−

Solvable model for Helmholtz resonator

Boris S. Pavlov
The University of Auckland, New Zealand
pavlov@math.auckland.ac.nz

The Kirchhoff model gives a convenient Ansatz

Ψ(x,ν,λ) = ΨN
out(x,ν,λ)+Aout GN

out(x,xΓH ,λ)

for calculation of the scattered wave in the outer domain
of the Helmholtz resonator, in terms of the scattered wave
and the Green function of the Neumann Laplacian in the
outer domain, with a pole xΓ at the point-wise opening
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connecting the outer domain with the cavity. We suggest
an explicit formula for the Kirchhoff coefficient Aout , and
the corresponding formula for Aint in the cavity, based on
construction of a solvable model for the Helmholtz res-
onator with narrow and short connecting channel.
PACS numbers:73.63.Hs,73.23.Ad,85.35.-p,85.35.Be

−→ ∞¦∞←−

Trapped modes in steady flow problems

Dario Pierotti
Politecnico di Milano, Italy
darpie@mate.polimi.it

We consider the problem of the steady two-dimensional
flow of a heavy, ideal fluid, over localized perturbations of
a horizontal bottom. We assume irrotational motion and
neglect the effects of surface tension. A linearized ver-
sion of the problem is discussed in terms of a perturbed
stream function. We investigate unique solvability for all
values of the (unperturbed) stream velocity; in the par-
ticular case of a submerged hollow of rectangular shape,
we provide sufficient conditions on the hollow’s size for
the existence of non trivial solutions of the homogenous
problem (trapped modes).

−→ ∞¦∞←−

Analysis and Discretization of Semilinear Stochastic
Wave Equations with Power Law Nonlinearity and Q-
Regular Space-Time Noise

Henri Schurz
Southern Illinois University (SIU-C), USA
hschurz@math.siu.edu

The one-dimensional wave equations with certain power
laws of quasi-nonlinearity perturbed by Q-regular space-
time random noise are considered. This model describes
the displacement of a noisy nonlinear string. We shall
discuss existence and uniqueness of (strong) solutions
using energy-type methods based on the construction of
Lyapunov-functions. Appropriate truncations and finite-
dimensional approximations are presented while using
an approach exploiting the explicit knowledge on eigen-
functions of related second order differential operators.
Moreover, the probabilities of large fluctuations are esti-
mated and some nonstandard partial-implicit difference
methods for their numerical integration are suggested in
order to control its energy functional in a dynamically
consistent fashion. Parts of this presentation are related
to ideas of an ongoing joint work with Boris Belinskiy on

the randomly perturbed, nonlinear beam model (4th order
SPDE).

−→ ∞¦∞←−

About Some Aspects in Numerical Investigation of
Nonlinear Schrödinger Equation

Michail D. Todorov
Faculty of Applied Mathematics and Informatics by the
Technical University of Sofia, Bulgaria
mtod@tu-sofia.bg

The investigation of soliton supporting systems is of great
importance both for the applications and for the funda-
mental understanding of the phenomena associated with
propagation of solitons. Recently, elaborate models such
as Coupled Nonlinear Schrödinger Equations (CNLSE)
appeared in the literature. They involve more parameters
and possess richer phenomenology but, as a rule, are not
fully integrable and require numerical approaches. The
non-fully-integrable models possess as a rule three con-
servation laws: for (wave) ”mass”, (wave) momentum,
and energy and these have to be faithfully represented
by the numerical scheme. In this instance, we follow
generally [1] but focus on a new implementation of the
conservative scheme that makes use of complex variables.
This allows us to invert (albeit complex-valued) but five
diagonal matrices while the real-valued scheme requires
the inversion of nine-diagonal matrices [1]. This gives a
significant advantage in the efficiency of the algorithm.
To this end, we generalize the computer code developed
earlier for real-valued algebraic systems in [2].
As a featuring example we consider 3D unsteady propaga-
tion with axial symmetry, which leads to (2+1)D CNLSE.
We use the second Douglas scheme (called the stabiliz-
ing correction) which is based on splitting of the spatial
operator and effective inversion of 1D operators. In order
to guarantee the conservation law, the intensity at each
step along the propagation direction is renormalized. To
make the scheme fully implicit for the nonlinear case, we
introduce also internal iteration.

The paper is partially supported by Bulgarian Ministry
of Education and Science under Grant VY-MI-106/2005.
References:
[1] W.J.Sonnier, C.I.Christov, Strong coupling of
Schrodinger equations: Conservative scheme approach,
Mathematics and Computers in Simulation, 69, 514-525
(2005).
[2] C.I.Christov, Gaussian elimination with pivoting for
multi–diagonal systems, Internal Report 4, University of
Reading (1994).

−→ ∞¦∞←−
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Fractional stable distributions and their applications
to solution of fractional differential equations

Vladimir Uchaikin
Case Western Reserve University, USA
v uchaikin@mail.ru

The class of fractional stable distributions (FSD’s) in-
troduced recently by the author and his collaborators is
discussed. Containing alpha-stable distributions as a sub-
class, the set of FSD’s covers all fundamental solutions
of two-term fractional (both in space and time) partial
differential equations. The main properties of FSD’s are
described: characteristic functions, Laplace and Mellin
transforms, convergent and asymptotic series representa-
tion, integral representation, relations to elementary and
special functions, duality interrelations and the others.
Formulating some of the properties in terms of random
variables yields the algorithms of simulation of random
variables with FSD by Monte Carlo method and estima-
tion of their parameters are demonstrated and illustrated
by numerical examples. On the base of the FSD’s prop-
erties, the algorithm of simulation of interarrival times in
the fractional Poisson process is derived and applied to
modeling of compound Poisson and Kolmogorov-Feller
processes of fractional orders. This simulation can be
considered as a direct numerical method for solution of a
fractional stochastic equation with the Riemann-Liouville
fractional derivative with respect to time. The talk is
ended by a short review of physical applications of FSD’s
.
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On the behaviour of the implied volatility under a
long-memory stochastic volatility model

Josep Vives
Universitat de Barcelona/Universitat Autònoma de
Barcelona, Spain
vives@mat.uab.es
Elisa Alös

Following the ideas presented in [CR] and in [CCR]
we propose, by fractional integration, a stochastic long-
memory volatility model. By means of Malliavin Calcu-
lus we study the behaviour of the corresponding implied
volatility, both for short-dated and for long-dated options.
References:
[CR] F. Comte and E. Renault (1998): Long memory in
continuous time stochastic volatility models Mathemati-
cal Finance, 8, 291-323.
[CCR] F. Comte, L. Coutin and E. Renault (2003): Affine
fractional stochastic volatility models with application to

option pricing Discussion paper n. 2003-10, University
of Montreal.

−→ ∞¦∞←−

Inverse problems involving smart obstacles

Francesco Zirilli
Universita di Roma ”La Sapienza” Dipartimento di
Matematica ”Guido Castelnuovo” Roma, Italy
f.zirilli@caspur.it

Direct and inverse acoustic scattering problems involv-
ing smart obstacles are proposed and some ideas to study
them are suggested. A smart obstacle is an obstacle that
when hit by an incoming acoustic wave reacts circulating
on its boundary a pressure current, that is a quantity di-
mensionally given by pressure divided by time, in order
to generate a scattered wave that pursues a preassigned
goal. In our models the smart obstacle pursues one of the
following goals: i) to be undetectable, ii) to appear with a
shape and/or acoustic boundary impedance different from
its actual ones, iii) to appear with a shape and/or acoustic
boundary impedance and in a location in space different
from its actual ones. That is, in the first case the smart
obstacle tries to be furtive, in the second case it tries to be
masked that is it tries to appear as another obstacle that we
call the mask and finally in the third case it tries to appear
as another obstacle in a location in space different from
its actual one. We refer to this last apparent obstacle as
the ghost. The direct scattering problem considered is the
following; given the incoming acoustic field, the obstacle,
its acoustic impedance and its goal formulate an adequate
mathematical model for the problems previously consid-
ered and find the optimal strategy to pursue the assigned
goal within the proposed model. The inverse scattering
problem considered is the following: given the knowledge
of several far fields generated by the smart obstacle when
hit by known incident acoustic fields it reacts with the op-
timal strategy and the knowledge of the goal pursued by
the obstacle find the obstacle (i.e. find the shape, acous-
tic impedance and spatial location of the obstacle). For
simplicity in this paper we limit our attention to the case
of the obstacle that tries to be masked when the incoming
acoustic field is time harmonic. Moreover in the inverse
problem we assume that the acoustic boundary impedance
of the obstacle and of the mask are known. In this case
the direct scattering problem is translated in a constrained
optimization problem and its solution is characterized
as the solution of a set of auxiliary equations, that is a
boundary value problem for a system of two Helmholtz
equations. The inverse scattering problem is translated
in a two steps optimization procedure, that is an inverse
problem for the system of two Helmholtz equations men-
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tioned above. Finally in a test case the inverse problem is
solved numerically starting from synthetic data. Material
related to the problems described here is contained in the
websites: http: //www.econ.univpm.it/recchioni/w6, http:

//www.econ.univpm.it/recchioni/w13.
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